Regulation of MBK-2/Dyrk Kinase by Dynamic Cortical Anchoring during the Oocyte-to-Zygote Transition

نویسندگان

  • Michael L. Stitzel
  • Ken Chih-Chien Cheng
  • Geraldine Seydoux
چکیده

BACKGROUND Successful transition from oocyte to zygote depends on the timely degradation of oocyte proteins to prepare for embryonic development. In C. elegans, degradation of the oocyte protein MEI-1 depends on MBK-2, a kinase that phosphorylates MEI-1 shortly after fertilization during the second meiotic division. RESULTS Here we report that precise timing of MEI-1 phosphorylation depends on the cell cycle-regulated release of MBK-2 from the cortex. Prior to the meiotic divisions, MBK-2 is tethered at the cortex by EGG-3, an oocyte protein required for egg activation (see [1], accompanying paper in this issue). During the meiotic divisions, EGG-3 is internalized and degraded in an APC/C (anaphase-promoting complex/cyclosome)-dependent manner. EGG-3 internalization and degradation correlate with MBK-2 release from the cortex and MEI-1 phosphorylation in the cytoplasm. In an egg-3 mutant, MEI-1 is phosphorylated and degraded prematurely. CONCLUSION We suggest that successful transition from an oocyte to a zygote depends on the cell cycle-regulated relocalization of key regulators from the cortex to the cytoplasm of the egg.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition

DYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the tran...

متن کامل

The C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation

The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, ...

متن کامل

Pseudophosphatases: Grab and Hold on

Catalytically inactive pseudophosphatases are able to signal in the absence of enzymatic activity. Analyzing the oocyte-to-zygote transition in the worm, Cheng et al. (2009) and Parry et al. (2009) now show how two pseudophosphatases, EGG-4 and EGG-5, can regulate signaling by the DYRK family kinase MBK-2.

متن کامل

Identification of Suppressors of mbk-2/DYRK by Whole-Genome Sequencing

Screening for suppressor mutations is a powerful method to isolate genes that function in a common pathway or process. Because suppressor mutations often do not have phenotypes on their own, cloning of suppressor loci can be challenging. A method combining whole-genome sequencing (WGS) and single nucleotide polymorphism (SNP) mapping (WGS/SNP mapping) was developed to identify mutations with vi...

متن کامل

Global Transcriptional Repression in C. elegans Germline Precursors by Regulated Sequestration of TAF-4

In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007